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Abstract
Purpose: To introduce quantitative rapid gradient-echo (QRAGE), a novel
approach for the simultaneous mapping of multiple quantitative MRI parameters,
including water content, T1, T2*, and magnetic susceptibility at ultrahigh field
strength.
Methods: QRAGE leverages a newly developed multi-echo MPnRAGE sequence,
facilitating the acquisition of 171 distinct contrast images across a range of TI
and TE points. To maintain a short acquisition time, we introduce MIRAGE2, a
novel model-based reconstruction method that exploits prior knowledge of tem-
poral signal evolution, represented as damped complex exponentials. MIRAGE2
minimizes local Block-Hankel and Casorati matrices. Parameter maps are derived
from the reconstructed contrast images through postprocessing steps. We validate
QRAGE through extensive simulations, phantom studies, and in vivo experiments,
demonstrating its capability for high-precision imaging.
Results: In vivo brain measurements show the promising performance of QRAGE,
with test–retest SDs and deviations from reference methods of< 0.8% for water con-
tent, < 17 ms for T1, and< 0.7 ms for T2*. QRAGE achieves whole-brain coverage
at a 1-mm isotropic resolution in just 7 min and 15 s, comparable to the acquisition
time of an MP2RAGE scan. In addition, QRAGE generates a contrast image akin to
the UNI image produced by MP2RAGE.
Conclusion: QRAGE is a new, successful approach for simultaneously mapping
multiple MR parameters at ultrahigh field.
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1 INTRODUCTION

Quantitative MRI (qMRI) has emerged as a powerful
tool for measuring physiological MR parameters, offer-
ing advantages over conventional qualitative MRI in terms
of sensitivity and comparability.1 It enables the inference
of specific tissue properties, which have the potential
to provide deeper insights into disease pathophysiology
and, consequently, the development of better therapeutic
strategies. Regarding brain tissue, a few key measurable
properties are water content, iron content, and myelina-
tion. These properties have been implicated in conditions
such as multiple sclerosis, epilepsy, tumors, stroke, and
traumatic brain injury, highlighting their importance and
potential in therapeutic development.2–4 The quantitative
parameters derivable from MRI, such as the longitudinal
relaxation time T1, the effective transverse relaxation time
T∗2, the magnetic susceptibility of tissue, and the proton
density, are directly related to these properties and pro-
vide information about them. In particular, myelination
and iron content affect T1, T∗2, and the magnetic suscepti-
bility of tissue,5–7 and proton density reflects the percent of
observed water protons in each voxel.8

The increasing availability of commercial 7T MRI
scanners has enabled imaging with increased SNR and
higher resolution, albeit with its own set of challenges.
For instance, with increasing field strengths, T1 length-
ens while T∗2 shortens; the static magnetic field, B0, and
the transmit field, B+1 , become more inhomogeneous; and
the specific absorption rate (SAR) increases superlinearly.4
Thus, to leverage the full potential of ultrahigh field
strength (UHF) in qMRI, there is a critical need for fast,
accurate, and robust qMRI methods that are well adapted
to UHF and optimized to overcome the aforementioned
challenges.

In this study, we present an efficient qMRI technique,
termed quantitative rapid gradient echo (QRAGE), which
is tailored to application at UHF for simultaneous quantifi-
cation of the four MR parameters introduced previously,
namely, free water content (CW), T1, T∗2, and magnetic
susceptibility (𝜒).

To the best of our knowledge, this study is the first
to develop a method that allows the simultaneous acqui-
sition of the four parameters at UHF strength within a
relatively short acquisition time. Although several meth-
ods for the estimation of these parameters exist, they either
target individual parameters or are optimized to work at
lower field strengths. For instance, the variable flip angle
(VFA) method, which relies on multi-echo gradient-echo
(MEGE) sequences acquired at different flip angles, is used
commonly for estimating CW.9–12 However, a fundamen-
tal challenge of the VFA method is the impact of transmit
field inhomogeneities at UHF, leading to a potential bias

in parametric estimates.13 It also suffers from long acqui-
sition times and is highly susceptible to motion artifacts.
Several newer methods have been developed to enable
fast imaging and improved motion robustness at field
strengths of up to 3 T, such as magnetic resonance finger-
printing (MRF),14 echo-planar time-resolved imaging,15,16

and 3D quantification using an interleaved Look-Locker
acquisition sequence,17,18 but translation to 7 T has been
challenging. The existing MRF framework, for instance,
encounters issues related to high SAR and biased estimates
due to B+1 inhomogeneities, which become particularly
relevant at UHF. Although there is ongoing research ded-
icated to low SAR MRF sequence development19 and the
incorporation of B+1 in the MRF dictionary,20,21 success at
7 T is currently limited.

A successful multiparametric qMRI approach at UHF
is the multi-echo (ME) MPRAGE sequence with two TIs
(ME-MP2RAGE), which extends the capabilities of the
MP2RAGE sequence.2,22,23 This method acquires multi-
ple gradient echoes at two inversion time points, enabling
the extraction of information about T1, T∗2, and 𝜒 .
The ME-MP2RAGE sequence demonstrates robustness
against static magnetic field and transmit field inhomo-
geneities, while also imposing a low SAR burden, mak-
ing it well-suited for UHF applications. However, given
that the Look-Locker signal adheres to a three-parameter
model, the estimation of T1 from only two inversion time
points is a challenging task. In particular, it has been
shown that MP2RAGE-like sequences tend to underesti-
mate T1 values, which is an inherent limitation associated
with this approach.13,24 To overcome this limitation, the
multi-echo magnetization-prepared rapid gradient-echo
sequence with many inversion times (ME-MPnRAGE)
combines a high number of sampled inversion time
points with a highly accelerated acquisition and radial
view-sharing to maintain a reasonable acquisition time.13

Although radial view-sharing, as used in the MPn-
RAGE sequence, has been applied successfully in inver-
sion recovery (IR) and functional MRI sequences, its
application for multi-echo spin echo (MESE) and MEGE
sequences is less suitable, and model-based reconstruction
techniques are preferred instead.25–28 Low-rank methods
based on local Casorati matrices have been used to exploit
correlations between voxel time series in a local neighbor-
hood and have been applied successfully to IR and MESE
data but are ineffective for MEGE data due to the influ-
ence of B0 inhomogeneity.29 Structured low-rank methods
based on Hankel matrices have demonstrated their abil-
ity to address the challenges of MEGE data, exemplified
by the MIRAGE method,26 and have also been applied
successfully to IR, MESE, and diffusion data.30,31

Here, we propose QRAGE as a novel qMRI tech-
nique, comprising an imaging sequence, ME-MPnRAGE,
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230 ZIMMERMANN et al.

(A) (B)

F I G U R E 1 (A) Sequence diagram of the quantitative rapid gradient-echo sequence illustrating the timing and sequence of events, with
the TI and TE. (B) Signal evolution of a single homogeneous voxel showing the inversion recovery and multi-echo gradient-echo behavior,
with the TR, the steady-state magnetization M∞, the effective longitudinal relaxation R∗1, and the inversion efficiency 𝜇.

at many TIs, and a reconstruction technique, model-based
iterative reconstruction for accelerated gradient-echo
imaging with two temporal dimensions (MIRAGE2). The
ME-MPnRAGE sequence builds on an extended and
highly accelerated ME-MP2RAGE sequence by incorporat-
ing the acquisition of multiple TIs and TEs, allowing for a
more comprehensive characterization of the signal evolu-
tion at each voxel. Sampling the IR curve sufficiently long
also allows for the CSF magnetization to closely approach
the steady state, which is essential for CW mapping, as
CSF serves as the normalization reference for 100% water
content. To address the challenge of the resulting long
acquisition times, we further propose a novel model-based
reconstruction method, MIRAGE2, which jointly recon-
structs the k-space data acquired at all time points
while leveraging prior information about the spatiotem-
poral signal evolution of the ME-MPnRAGE sequence.
Although various model-based reconstruction techniques
have been developed for IR and MEGE sequences, none
have been specifically tailored for the unique charac-
teristics of the ME-MPnRAGE sequence, which com-
bines both IR and MEGE behavior.26,32–34 The MIRAGE2
method builds on the MIRAGE algorithm by incorpo-
rating prior knowledge of the temporal signal evolution
through minimization of the rank of local Block-Hankel
and Casorati matrices, leveraging the 2D nature of the
exponentials in the sequence and exploiting their local
correlations.

2 THEORY

2.1 Sequence and signal model

In this section, we provide a comprehensive descrip-
tion of the proposed ME-MPnRAGE sequence. The
ME-MPnRAGE sequence begins with an adiabatic inver-
sion pulse, followed by a series of RF pulses and
gradient-echo acquisitions after each RF pulse. The
sequence diagram of the ME-MPnRAGE sequence is
shown in Figure 1A. This multi-echo, Look-Locker-based
sequence enables the independent capture of longitudinal
and transverse relaxation dynamics. We assume that, in a
general multi-echo Look-Locker-based sequence, the time
signal X(r) ∈ CNI×NE of each voxel at position r with the
number of sampled inversion time (TI) and echo time (TE)
points NI and NE can be represented as a summation of 2D
damped complex exponentials, as follows:

xm,n(r) =
NQ(r)∑

q=1
M∞,q(r)

⎡
⎢
⎢
⎢⎣
1 −

(1 + 𝜇(r)) exp
(
−TI,mR∗1,q(r)

)

1 + 𝜇(r) exp
(
−TRR∗1,q(r)

)
⎤
⎥
⎥
⎥⎦

exp
(
−TE,n

(
R∗2,q(r) + i𝜔q(r)

))
, (1)

where NQ(r) is the number of tissue compartments; m ∈
[1,NI], n ∈ [1,NE], and q =

[
1,NQ(r)

]
are the TI, TE, and

compartment indices, respectively; M∞ is the steady-state
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ZIMMERMANN et al. 231

magnetization; R∗1 and R∗2 are the effective longitudinal
and transverse relaxation rates, respectively; 𝜔 is the local
resonance frequency; and 𝜇 is the inversion efficiency. A
representative signal evolution of a single voxel is depicted
in Figure B.

These parameters are interconnected with the equilib-
rium longitudinal magnetization M0 and the longitudinal
relaxation rate R1 through the following relationships:

M0(r) =
M∞,q(r)
sin(𝛼(r))

1 − cos(𝛼(r)) exp(−TαR1(r))
1 − exp(−TαR1(r))

(2a)

R1(r) = R∗1(r) −
log(cos(𝛼(r)))

Tα
, (2b)

where 𝛼 is the apparent flip angle, and Tα is the time
between two RF pulses. The equilibrium longitudinal
magnetization is directly proportional to the concentration
of free water, CW, and the magnetic susceptibility of tissue,
𝜒 , is linked to the local resonance frequency through spa-
tial dipole convolution.35–37 Additionally, the longitudinal
relaxation time is given by T1 = 1∕R1, while the effective
transverse relaxation time is expressed as T∗2 = 1∕R∗2.

2.2 Model-based reconstruction

Here, we introduce the concept of low-rank Hankel
and Casorati matrices to model the signal behavior and
describe the proposed reconstruction method, MIRAGE2.
At each voxel position r, one can form local Block-Hankel
matrices as follows:

B(r) =
⎡
⎢
⎢
⎢⎣

H1(r) · · · H𝛤1(r)
⋮ ⋱ ⋮

H𝛤1(r) · · · HNI (r)

⎤
⎥
⎥
⎥⎦

Hm(r) =
⎡
⎢
⎢
⎢⎣

xm,1(r) · · · xm,𝛤2 (r)
⋮ ⋱ ⋮

xm,𝛤2(r) · · · xm,NE (r)

⎤
⎥
⎥
⎥⎦

(3)

with 𝛤1 =
⌊

NI+1
2

⌋
and 𝛤2 =

⌊
NE+1

2

⌋
. The rank of such a

Hankel matrix is bound by

rank(B(r)) ≤ min
(

2 × NQ(r),
⌊NI + 1

2
× NE + 1

2

⌋)
(4)

In particular, the rank is not higher than twice the
number of tissue compartments inside the voxel and
can be lower if compartments share the same effective
transverse relaxation rate.

Additionally, at each voxel position r, one can form
local Casorati matrices as follows:

C(r) =
[
X(r + n1) · · · X

(
r + nNL

)]
, (5)

where nl is the local neighborhood; l is the voxel index
within the neighborhood; and NL is the number of vox-
els in the local neighborhood. The rank of such a Casorati
matrix is bound by

rank(C(r)) ≤ min

( NL∑

l=1
NQ(r + nl),NI,NE × NL

)
(6)

It is not higher than the total number of compart-
ments inside the voxels within the local neighborhood and
can be lower if there are compartments that share the
same effective longitudinal relaxation rate. Figure 2 illus-
trates the connection among the contrast images, the local
neighborhood, and the constructed Hankel and Casorati
matrices.

MIRAGE2 aims to reconstruct the images x from the
k-space data d acquired at multiple TIs and TEs with
respect to the temporal signal model by solving

min
x

1
2
||Ax − d||22 + 𝜆W‖TWx‖1,2 + 𝜆H‖THx‖∗,1
+ 𝜆C‖TCx‖∗,1, (7)

where A is the encoding operator; TW is the wavelet opera-
tor; TH is the Hankel operator; TC is the Casorati operator;
and 𝜆W, 𝜆H, and 𝜆C are the regularization weights. Here,
the wavelet operator applies a stationary wavelet transform
to each contrast image individually; the Hankel operator
constructs a Block-Hankel matrix at each voxel position
individually; and the Casorati operator forms a Casorati
matrix at each voxel position and its local neighborhood.
The mixed norm || ⋅ ||1,2 is used as a convex surrogate
for sparsity of the wavelet term using joint information
between contrast images, whereas the mixed norm || ⋅ ||∗,1
acts as a convex surrogate for the rank, summing the
nuclear norm over all voxel positions and local neighbor-
hoods, respectively.

An approach similar to the MIRAGE algorithm was
used to solve Eq. (7) by replacing it with an augmented
Lagrangian, as follows:

(x, z,u) =𝜆W‖xW‖1,2 + 𝜆H‖xH‖∗,1 + 𝜆C‖xC‖∗,1

+ 𝜌

2

‖‖‖‖‖‖
−

(
0
x

)
+

(
A
T

)
z +

(
d
u

)‖‖‖‖‖‖

2

2

,

(8)

 15222594, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30272 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [15/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



232 ZIMMERMANN et al.

(A)

(B)

(C)

F I G U R E 2 (A) Contrast images at different TIs and TEs, with a highlighted local neighborhood consistently marked in each image. (B)
Voxel time series from a single voxel and the formation of the corresponding local Block-Hankel matrix. (C) Voxel time series of two example
voxels from a local neighborhood and the formation of the corresponding local Casorati matrix. The time points xm,n are color-coded in the
border color of the contrast images in (A) and the dot color in (B) and (C).

where z is the primal variable; x = (xW; xH; xC) is the dual
variable; u = (uW;uH;uC) is the Lagrangian multiplier;
T = (TW;TH;TC) is the transform operator; and 𝜌 is the
penalty parameter. The alternating direction method of
multipliers solves Eq. (8) by performing the following
updates in an alternating fashion:

x(k+1)
W = 𝜆W∕𝜌

(
TWz(k) + u(k)W

)

x(k+1)
H = 𝜆H∕𝜌

(
THz(k) + u(k)H

)

x(k+1)
C = 𝜆C∕𝜌

(
TCz(k) + u(k)C

)

z(k+1) =
(
ATA + TTT

)−1(ATd + TT(x(k+1) − u(k)
))

u(k+1) = u(k) − x(k+1) + Tz(k+1), (9)

where k is the iteration index;𝜆(x) is the soft-thresholding
operator; and 𝜆(x) is the singular-value soft-thresholding
operator until a suitable stopping criterion is reached. The
x and u updates have analytic solutions and can be exe-
cuted in parallel. The z update is carried out by solving
the conjugate gradient algorithm on the normal equation

and can be performed efficiently via Toeplitz embedding
of ATA exploiting TTT = TT

WTW + TT
HTH + TT

CTC being
diagonal.

3 METHODS

3.1 Data acquisition

A stack-of-stars trajectory was used in this study, consist-
ing of a golden-angle radial sampling trajectory38 and a
segmented MPRAGE-like readout,39 acquiring 16 parti-
tions after each adiabatic inversion pulse (see Figure S1).
The radial sampling pattern offers spatial and temporal
incoherence, meaning that it samples different parts of
k-space at each TI and TE and is highly robust to motion.
Moreover, the sequence can be terminated at any time
without compromising the usability of the acquired data,
although image resolution and SNR may be affected. The
experiments in this study aimed to assess the accuracy
and reliability of QRAGE. To address the former, reference
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ZIMMERMANN et al. 233

methods, used widely as gold standards, were acquired for
each quantitative parameter. For the latter, longitudinal
test–retest experiments were performed.

All experiments were performed using a commercial
7T scanner (MAGNETOM Terra; Siemens Healthineers,
Erlangen, Germany). A 32-element head coil (Nova Med-
ical Head Coil 1TX/32RX; Nova Medical, MA, USA) was
used for excitation and signal reception in both phantom
and in vivo experiments.

The imaging protocol included a stack-of-stars
ME-MPnRAGE sequence, using the radial sampling
pattern described previously. Each partition used the
same k-space undersampling pattern. The sequence
parameters were as follows: TR = 9055 ms, TE,1 = 3.1 ms,
ΔTE = 2.8 ms, TI,1 = 250.4 ms, ΔTI = 475.7 ms, flip angle
(FA) = 5◦ , slab-selective excitation with a single slab, 9
echoes, 19 inversion time points, nonselective adiabatic
inversion, resolution= 1 × 1 × 1 mm, matrix size= 256
× 256 × 160, bandwidth (BW) = 340 Hz∕px, base res-
olution= 256, 8 spokes, and turbo factor= 16 (i.e., 16
partitions were acquired in each repetition). The param-
eters were selected carefully to adequately sample the
TI and TE curve, with a primary focus on generating a
steady-state magnetization featuring a strong CSF signal.
This is particularly important for accurate water content
estimation, as CSF serves as the normalization reference
for 100% water content.10,11 The data were undersampled
along the z-dimension with a factor of 2 and 32 reference
lines, resulting in a total scan time of TA = 7 ∶ 15 min
and a total acceleration factor of 53.33.

To serve as a CW reference, a VFA protocol was
used, consisting of a M0-weighted and a T1-weighted
2D gradient-echo sequence (SIEMENS GRE2D).10,11 The
sequence parameters were as follows: TR = 1800∕818 ms,
TE,1 = 5.9 ms, TE,2 = 10.0 ms, ΔTE = 2.7 ms, 10/1
echoes, bipolar readout, FA = 40◦∕70◦ , resolution= 1
× 1 × 1.5 mm, matrix size= 256 × 256 × 90, slice
gap= 0%, slice interleaving with two slice concatenations,
BW = 210 Hz∕px, GRAPPA= 2 with 24 reference lines,
phase partial Fourier= 6/8, and TA = 6 ∶ 34∕3 ∶ 04 min.

To serve as a T1 reference, the T1 mapping with par-
tial inversion recovery (TAPIR) sequence was used.40,41

The sequence parameters were as follows: TI,1 = 20 ms,
ΔTI = 591 ms, TE = 4.3 ms, 𝜏 = 2400 ms, 20 inversion
time points, FA = 5◦ , resolution= 1 × 1 × 2 mm, matrix
size= 256 × 256 × 64, slice gap= 25%, BW = 444 Hz∕px,
GRAPPA= 2 with 24 reference lines, phase partial
Fourier= 6/8, and TA = 25 ∶ 30 min. The combination
of a long ΔTI and a low FA resulted in nearly undis-
turbed relaxation for T1 values up to 2000 ms, significantly
reducing the susceptibility of T1 estimates to errors in
the transmit field correction, bringing it more in line to
the IR–spin echo–EPI sequence for T1 validation at 7 T.

However, the slice-interleaved acquisition of the TAPIR
sequence allows for greater volume coverage, leading to a
more accurate comparison.

A 3D MEGE sequence (SIEMENS GRE3D) was used as
T∗2 and χ reference. The sequence parameters were as fol-
lows: TR = 45.0 ms, TE,1 = 5.22 ms, ΔTE = 2.7 ms, FA =
5◦ , 12 echoes, bipolar readout, elliptical scanning, resolu-
tion= 1 × 1 × 1 mm, matrix size= 256 × 256 × 160, BW =
340Hz∕px, GRAPPA= 2 with 24 reference lines, phase
partial Fourier= 6/8, FlowComp: Slice/Read, and TA =
11 ∶ 06 min.

An MP2RAGE sequence (SIEMENS MP2RAGE) was
used for structural data and segmentation but also pro-
vided a T1 map.39 The sequence parameters were as fol-
lows: TR = 4300.0 ms, TE = 3.0 ms, TI,1 = 840.0 ms, TI,2 =
2370.0 ms, FA = 5◦ , nonselective adiabatic inversion, res-
olution= 1 × 1 × 1 mm, matrix size= 256 × 256 × 160,
BW = 340 Hz∕px, GRAPPA= 2 with 24 reference lines,
slice partial Fourier= 6/8, turbo factor= 160, and TA = 9 ∶
59 min.

Additionally, the transmit field inhomogeneity was
mapped using a presaturated Turbo FLASH sequence
(SIEMENS B1MAP TRA).42 The sequence param-
eters were as follows: TR = 5000 ms, TE = 1.7 ms,
FA = 90◦ , resolution= 4 × 4 × 4 mm, matrix size= 64
× 64 × 32, slice gap= 25%, interleaved acquisition,
BW = 490 Hz∕px, GRAPPA= 2 with 16 reference lines,
and TA = 0 ∶ 11 min.

3.2 Simulations

Numerical validations were conducted using parameter
maps generated based on an anatomical model of the nor-
mal brain, assuming typical values for the equilibrium lon-
gitudinal magnetization M0, longitudinal relaxation time
T1, and effective transverse relaxation time T∗2.43 To simu-
late tissue contrast in the field map, the magnetic suscep-
tibility was assigned according to Marques et al.44 Before
simulation, the field map underwent second-order shim-
ming. Contrast images were generated by inserting the
parameter maps in Eq. (1). A homogeneous inversion effi-
ciency of 0.9 and an RF pulse of 5◦ were used without
considering transmit field inhomogeneity. The remain-
ing parameters were consistent with the ME-MPnRAGE
protocol described previously.

After reconstructing the individual contrasts, the
parameter maps were estimated using a four-parameter
fit of the model in Eq. (1) using only a single com-
partment (i.e., NQ = 1). This estimation was performed
using a custom variable projection-based approach and
a standard trust-region reflective algorithm applied to
the reconstructed images.45,46 The parameters considered
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234 ZIMMERMANN et al.

in the fit were the real and imaginary part of M∞,
as well as R∗1, R∗2, and 𝜔. To improve stability, con-
straints were applied to R∗1, R∗2 and 𝜔, with their respec-
tive ranges set to [1∕5000 ms, 1 ms], [1∕500 ms, 1 ms], and[
−π∕ΔTE,+π∕ΔTE

]
, respectively.

In the next step, the water content and the longitudi-
nal relaxation time were estimated according to Eqs. (2a)
and (2b), and the magnetic susceptibility was computed
via dipole inversion of the field map using the open-source
code provided.47 Reference maps were generated by apply-
ing the aforementioned steps to the simulated contrast
images.

To demonstrate the accuracy of the estimated param-
eter maps, the voxel-wise absolute difference was com-
puted between the estimated parameter maps and the
reference maps. Mean values of gray and white matter
were estimated for each quantitative parameter. To ana-
lyze the effect of the regularization terms, an ablation
experiment comprising the same analysis described previ-
ously was performed with data reconstructed using only
the wavelet term (W), the wavelet and Casorati terms
(W+C), and the wavelet and Hankel terms (W+H),
with the QRAGE reconstruction comprising all three reg-
ularization terms (W+H+C). Furthermore, to analyze
the method’s robustness against noise, the same analysis
described previously was performed again using simulated
k-space data d corrupted by different amounts of additive
Gaussian-distributed white noise n. The noise level was
set such that 20 log(||d||∕||n||) equals 20 dB and 10 dB for a
high and low SNR case, respectively.

3.3 Experimental validations

As jointly reconstructing all partitions and contrasts would
result in an excessively large reconstruction problem, a
multistep process was used to transform the reconstruc-
tion problem into a slice-by-slice approach. First, GRAPPA
was applied individually to each spoke to fill in the missing
data.48 Subsequently, the data underwent Fourier trans-
formation along the z-direction, enabling further process-
ing on a slice-by-slice basis. A geometric coil compres-
sion technique was then used to compress the data into
eight virtual channels.49 Gradient-delay correction was
performed using the RING method.50 Coil sensitivities
were estimated through SAKE reconstruction of a calibra-
tion area, followed by ESPIRiT, using independent chan-
nel signals from the last inversion time point and the first
echo.51,52 Finally, the MIRAGE2 algorithm was used to
reconstruct the data.

After reconstruction, parameter maps were estimated
using the previously described approach. It should be
noted that although certain regions, such as blood vessels

and areas affected by strong static field inhomogeneity,
deviated from the model, it was chosen for simplicity and
comparability purposes.

Further postprocessing steps involved estimating the
quantitative susceptibility map based on the field map47

and estimating the water content map from the equilib-
rium longitudinal magnetization, which involves correct-
ing for residual nonuniformity and calibrating to a region
with 100% water content.10

The reference maps were estimated from the VFA,
TAPIR, GRE3D, and MP2RAGE data according to Refs.
10,11,39–41,47,and 53. For the TAPIR, MP2RAGE, and
QRAGE data, a homogeneous inversion efficiency of 0.75,
0.9, and 0.9 was assumed, respectively, which was based
on inversion efficiency measurements and literature val-
ues,54 and transmit field correction was performed using
the acquired B+1 map.

The validation of T1 values estimated by QRAGE was
performed using a so-called “revolver phantom,” which
consisted of 12 tubes with varying agarose concentrations
doped with NiCl to modify T1 and T∗2 properties. The esti-
mated T1 parameter maps from the central slices were
compared with a TAPIR reference scan. The accuracy and
precision of the method were analyzed by computing the
mean value of each tube from the undersampled data and
comparing it with the TAPIR reference scan. Additionally,
the Pearson product–moment correlation coefficient was
calculated for the mean values of all tubes.

After approval of the study by the local ethics commit-
tee, MR data were acquired from 4 healthy male volunteers
(aged 28 ± 2) following prior written informed consent.
The subjects were scanned on 3 different days using the
QRAGE method, and a single set of reference maps was
also obtained. An MP2RAGE-like contrast was generated
from the QRAGE data set, as follows:

UNIQRAGE(r) =
real

(
x1,1(r)x2,1(r)

)

||x1,1(r)||
2 + ||x2,1(r)||

2 (10)

where x1,1 and x2,1 are the synthetic contrast images that
were generated from inserting the fitted parameters M∞,
R∗1, R∗2, and 𝜔 into Eq. (1) and setting TI,1 = 1000 ms,TI,2 =
3500 ms, and TE,1 = 0 ms to match the MP2RAGE con-
trast.39 Subsequently, tissue class maps were generated
from these MP2RAGE-like contrast images using SPM.55

To avoid interpolation and rescaling errors, additional tis-
sue class maps were generated from the M0 map obtained
from each method for the CW and T1 reference methods.
Similarly, tissue class maps were generated from the con-
ventional MP2RAGE scan for the T∗2 and QSM reference
methods. Mean values for CW, T1, and T∗2 were com-
puted for gray and white matter for all subjects, all three
QRAGE repetitions, and the reference and MP2RAGE
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ZIMMERMANN et al. 235

F I G U R E 3 The reference and estimated
parameter values obtained from the simulated
data sets, along with the absolute difference
between them. The parameters include CW, T1,
T∗2, and 𝜒 , and the analysis is performed
without the addition of any noise. QRAGE,
quantitative rapid gradient echo.

scans individually. In the case of the CW and T1 reference
methods, the lower 30 and 26 brain slices, respectively,
were excluded from the comparison due to poor transmit

field homogeneity and low inversion efficiency. To ana-
lyze the effect of the regularization terms, an ablation
experiment was performed in which data from all subjects
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236 ZIMMERMANN et al.

T A B L E 1 Mean values of quantitative parameters for simulated data reconstructed using different regularization terms.

Method Mean SD Reference Difference

CW [%] GM W 83.4 5.1 0.4

W+C 84.1 3.7 1.1

W+H 83.2 2.2 83.0 (0.0) 0.2

W+H+C 83.3 2.0 0.3

WM W 70.0 2.9 0.0

W+C 70.8 2.3 0.8

W+H 70.1 1.8 70.0 (0.0) 0.1

W+H+C 70.2 1.6 0.2

T1 [ms] GM W 2092 131 27

W+C 2079 94 14

W+H 2063 65 2065 (0) −2

W+H+C 2063 20 -2

WM W 1314 68 30

W+C 1304 41 20

W+H 1281 42 1284 (0) −3

W+H+C 1285 8 1

T2* [ms] GM W 28.2 5.8 −1.8

W+C 28.4 4.6 −1.6

W+H 29.4 1.7 30.0 (0.0) −0.6

W+H+C 29.3 1.8 −0.7

WM W 25.2 2.7 −0.8

W+C 25.4 2.1 −0.6

W+H 25.6 1.2 26.0 (0.0) −0.4

W+H+C 25.6 1.2 −0.4

𝜒 [ppb] GM W 23.1 23.6 −7.7

W+C 27.5 24.6 −3.3

W+H 30.3 25.8 30.8 (25.8) −0.5

W+H+C 30.3 25.8 −0.5

WM W −18.7 22.5 +4.1

W+C −21.5 25.7 +1.3

W+H −22.7 28.2 −22.8 (28.4) +0.1

W+H+C −22.7 28.1 +0.1

Bold values indicate the lowest value, i.e., best method, for a certain parameter, e.g., CW, and tissue type, e.g., GM.
Abbreviations: C, Casorati term; GM, gray matter; H, Hankel term; W, Wavelet term; WM, white matter.

acquired in the first repetition were further reconstructed
using only the wavelet term (W), the wavelet and Caso-
rati terms (W+C), and the wavelet and Hankel terms
(W+H), with the QRAGE reconstruction comprising all
three regularization terms (W+H+C).

3.4 Reconstruction

The reconstruction process was conducted offline using a
custom Python software package developed in-house. Data
preprocessing and postprocessing were carried out on the
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ZIMMERMANN et al. 237

T A B L E 2 Mean values of T1 for phantom data.

T1 [ms]

Tube TAPIR QRAGE Rel. error

1 890 856 3.89%

2 905 864 4.47%

3 1189 1112 6.50%

4 1302 1242 4.65%

5 1342 1339 0.21%

6 1346 1380 2.52%

7 1501 1454 3.17%

8 1607 1620 0.80%

9 1649 1632 1.05%

10 1664 1691 1.63%

11 1765 1756 0.47%

12 1911 1912 0.03%

Abbreviation: QRAGE, quantitative rapid gradient echo; TAPIR, T1

mapping with partial inversion recovery.

institute compute cluster, whereas the JURECA system at
the Jülich Supercomputing Center enabled parallel recon-
struction of all slices.56 The entire reconstruction process
took approximately 6 h.

In the numerical, phantom, and in vivo experi-
ments, the reconstruction was performed with five inner
iterations (conjugate gradient algorithm on the normal
equation) and 250 outer iterations (alternating direction
method of multipliers). For the wavelet operator, D4
wavelets were used, and a 5 × 5 neighborhood was used for
the Casorati operator. The regularization parameters were
set as 𝜆W = 0.001, 𝜆H = 0.1, and 𝜆C = 0.01.

4 RESULTS

4.1 Simulations

Figure 3 shows the reference and estimated parameter
maps of CW, T1, T∗2, and 𝜒 obtained from the simulated
data, along with the absolute difference. The reference and
estimated parameter maps exhibit excellent visual agree-
ment. Among these parameters, T∗2 demonstrates the high-
est sensitivity and is the only one displaying systematic
errors, which can be seen in the absolute difference maps.
These errors are closely related to the inhomogeneity of
the static magnetic field, which leads to an underestima-
tion of T∗2. This can be further seen in Figure S2, where the
parameter maps obtained from data reconstructed using
different regularization terms are shown alongside a field
map of Δ𝜔0. It can be observed that the inclusion of the

Hankel term significantly reduces the overall error and the
susceptibility to Δ𝜔0 inhomogeneity, which is otherwise
present, particularly in CW and T∗2. The estimated param-
eter maps with added noise (low and high SNR) also show
good agreement with the reference maps and can be found
in Figure S3. Higher noise levels in the k-space data lead to
random noise in the parameter maps without introducing
systematic errors, particularly in areas affected by strong
Δ𝜔0 inhomogeneity.

Table 1 provides the mean values of all four parame-
ters for gray and white matter estimated from data recon-
structed using different regularization terms. For QRAGE,
the absolute differences from the reference values are 0.3%
or below for CW, below 2 ms for T1, below 0.7 ms for T∗2,
and below 0.6 ppb for 𝜒 . It can be seen that the inclusion of
the Hankel term produces the lowest differences to the ref-
erence values. With the exception of T∗2 in gray matter, the
further addition of the Casorati term leads to lower SDs in
the parameter maps, particularly in T1, but in a few cases
results in increased differences to the reference values of
0.1% in CW and 0.1 ms in T∗2. Table S1 displays the mean
values of all four parameters for gray and white matter
from data with different levels of added noise. Remark-
ably, for moderate levels of noise, the mean values remain
unchanged, and even with the introduction of high levels
of noise, the mean values change only slightly, highlight-
ing the exceptional robustness of the method. In particular,
CW changed less than 0.1%, T1 less than 2 ms, T∗2 less than
0.3 ms, and 𝜒 less than 0.1 ppb with increasing levels of
noise.

4.2 Phantom and in vivo experiments

The phantom experiments demonstrated excellent agree-
ment between the TAPIR reference data and the QRAGE
sequence across a broad range of clinically relevant T1 val-
ues (1000–2000 ms), encompassing typical values for both
gray matter and white matter. This is underlined by a high
correlation coefficient of 0.996 between the mean T1 values
of the TAPIR and QRAGE measurement. Mean T1 values
for each tube estimated by the TAPIR and QRAGE method
as well as the relative error for the QRAGE method can be
found in Table 2, and the correlation plot and T1 parame-
ter maps of both methods can be found in Figure S4, where
good visual agreement between the QRAGE and TAPIR
map can be observed. Figure S5 shows the contrast images
of the first five TI points and the first three TE points
from the in vivo measurements of a healthy representative
volunteer, and Figure 4 illustrates the estimated param-
eter maps derived from these contrast images, including
CW, T1, T∗2, and 𝜒 of the first repetition of the QRAGE
method and the reference methods. To assess accuracy and
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238 ZIMMERMANN et al.

F I G U R E 4 Estimated parameter maps derived from the in vivo data sets of a representative healthy volunteer. The parameter maps
include CW, T1, T∗2, and 𝜒 for the first repetition of the quantitative rapid gradient-echo (QRAGE) method as well as the reference methods.
Also shown are the voxel-wise SD across repetitions of the QRAGE method and the voxel-wise absolute difference of the voxel-wise mean of
the QRAGE method across repetitions to the reference methods.
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ZIMMERMANN et al. 239

F I G U R E 5 (A)
Histogram analysis of the
test–retest experiments,
showcasing the overlay of
histograms for water content,
T1, T∗2, and 𝜒 derived from
three different repetitions of
quantitative rapid
gradient-echo (QRAGE) of all
volunteers. (B) Test-reference
experiments, displaying the
overlay of the averaged
histogram for water content, T1,
T∗2, and 𝜒 over the repetitions
of QRAGE of all volunteers,
along with the histogram of the
reference methods.

(A)

(B)

test–retest stability, maps of the SD of the QRAGE method
across repetitions and the absolute difference of the mean
of the QRAGE method across repetitions to the reference
method are shown for each parameter. The parameter
maps exhibit favorable visual agreement between QRAGE
and the reference methods, as well as consistency between
repetitions of the QRAGE method. The parameter maps
obtained from data of the same volunteer reconstructed
using different regularization terms are shown in Figure S6
alongside a field map of Δ𝜔0. Again, it can be observed
that the inclusion of the Hankel term significantly reduces
the susceptibility to Δ𝜔0 inhomogeneity, in particular in
the CW and T∗2 maps, and that the further inclusion of the
Casorati term reduces overall noise, in particular in the T1
map, which is in agreement with the simulation results.

The accuracy and precision of the QRAGE method
were further validated through histogram analysis in
both the test–retest and test-reference analyses, which
are shown in Figure 5 for all volunteers. In the test–retest

analysis, the histograms demonstrate excellent agree-
ment between repetitions for all subjects, confirming
the robustness of the QRAGE method. Although the
test-reference analysis also reveals good agreement
between QRAGE and the reference methods, slight devi-
ations in the shape of the histograms are observed. These
deviations partly arise from differences in resolution
between the QRAGE and reference methods, particularly
in the case of CW and T1.

The accuracy and precision are further validated via
Bland–Altman-like analysis, comparing the mean values
for gray and white matter of all parameters estimated by
QRAGE to the values provided by the reference meth-
ods, thereby investigating the effect of different regular-
ization terms and analyzing test–retest stability as shown
in Figure 6. The results agree with the simulation results,
showing that, in particular, the Hankel term improves
the accuracy and precision of all estimated parameters,
with the exception of CW, where it leads to a small
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240 ZIMMERMANN et al.

(A) (B)

F I G U R E 6 (A) Bland–Altman-like diagram showing the mean values of water content, T1, and T∗2 for gray matter and white matter of
all subjects using data of the first repetition reconstructed using different regularization terms compared with the reference methods. (B)
Bland–Altman-like diagram showing the mean values of water content, T1, and T∗2 for gray matter and white matter of the quantitative rapid
gradient-echo (QRAGE) method of all repetitions compared with the reference methods. C, Casorati term; H, Hankel term; W, Wavelet term.

overestimation of about 0.6%. It also shows that while
QRAGE is in good agreement with TAPIR, T1 estimated
from MP2RAGE shows a systematic underestimation of
about 200–300 ms.

Table 3 presents the mean values for all four quan-
titative parameters, averaged over gray and white matter
for all subjects. QRAGE exhibits exceptional precision, as
evidenced by low SDs between repetitions, which are, on
average, 0.3% or below for CW, 17 ms or below for T1, and
0.7 ms or below for T∗2 for all subjects. Moreover, QRAGE
demonstrates high accuracy by displaying good agreement
with the reference methods. The differences in CW are, on
average, 0.8% or below, in T1 are 11 ms or below, and in T∗2
are 0.3 ms or below for all subjects. These differences fall
within the range of QRAGE’s precision, align well with the
simulation results, and agree well with the values from lit-
erature for water content mapping at 3 T and T1 mapping
at 7 T, further affirming the method’s reliability.10,24

Finally, the QRAGE method also generates an
MP2RAGE-like contrast (Figure 7), which was used here
for tissue mask segmentation using SPM. Visually, the

contrast obtained from QRAGE is comparable to the con-
trast produced by a reference MP2RAGE scan acquired
within this study.

5 DISCUSSION

In this study, we present a novel technique called QRAGE,
which enables fast and robust multiparametric qMRI at
UHF, thereby potentially opening up a wide range of clin-
ical MR applications. The acquisition time of QRAGE
is 7 min and 15 s, during which it generates parametric
maps with 1-mm3 isotropic resolution and full brain cov-
erage. Through numerical simulations, phantom exper-
iments, and in vivo studies, we have demonstrated the
accurate and precise estimation of various quantitative
MRI parameters, including water content, T1, T∗2, and
magnetic susceptibility. Notably, the acquisition time of
QRAGE is comparable to that of a qualitative MP2RAGE
scan, while providing similar image contrast. This feature
positions QRAGE as a potential drop-in replacement for
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ZIMMERMANN et al. 241

T A B L E 3 Mean values of quantitative parameters for in vivo data.

Subject
QRAGE
mean (SD) MP2RAGE Reference

Difference
QRAGE
reference

Difference
MP2RAGE
reference

CW [%] GM 1 83.9 (0.2) 83.8 0.1

2 84.8 (0.1) 84.5 0.3

3 84.8 (0.2) 84.9 −0.1

4 84.7 (0.4) 83.3 1.4

Mean 84.6 (0.2) 84.1 0.4

WM 1 69.8 (0.2) 69.3 0.5

2 71.9 (0.2) 70.8 1.1

3 69.9 (0.2) 69.4 0.5

4 69.7 (0.5) 68.5 1.2

Mean 70.3 (0.3) 69.5 0.8

T1 [ms] GM 1 2089 (29) 1832 2048 41 −216

2 2077 (19) 1831 2090 −13 −259

3 2055 (11) 1837 2043 12 −206

4 2049 (10) 1847 2045 4 −198

Mean 2068 (17) 1837 2068 11 −220

WM 1 1353 (9) 1191 1357 −4 −166

2 1379 (5) 1225 1361 +18 −136

3 1317 (6) 1157 1309 8 −152

4 1312 (7) 1162 1316 −4 −155

Mean 1340 (7) 1184 1340 −5 −152

T2* [ms] GM 1 28.7 (0.7) 29.3 −0.6

2 28.3 (1.4) 28.4 −0.1

3 28.6 (0.3) 28.4 0.2

4 29.1 (0.5) 28.8 0.3

Mean 28.7 (0.7) 28.7 0.0

WM 1 25.5 (0.3) 26.0 −0.5

2 26.0 (0.4) 26.4 −0.4

3 23.3 (0.2) 23.6 −0.3

4 25.2 (0.1) 25.2 0.0

Mean 25.0 (0.3) 25.3 −0.3

Note: QRAGE values are given as mean and SD over repetitions.
Abbreviations: GM, gray matter; QRAGE, quantitative rapid gradient echo; WM, white matter.

the widely used MP2RAGE sequence in neuroscientific
research protocols if the long reconstruction times can
be overcome in due course. Assuming this, it is likely
that QRAGE will find a high acceptance rate among
researchers.

Although the ME-MP2RAGE sequence can yield
high-quality T∗2 and magnetic susceptibility maps, it tends
to underestimate T1.13,24 VFA-based methods also face
challenges in providing accurate T1 estimates, particularly

in the presence of high transmit field inhomogeneity at
UHF. Conversely, Look-Locker-based methods such as
TAPIR and MPnRAGE, as well as QRAGE with their
extensive inversion time sampling, demonstrate robust-
ness in accurately estimating T1 values.39–41,57 Because
T1 is an essential correction factor in water content
mapping, QRAGE is better suited for applications at
UHF compared with the well-established VFA method
at 3 T.
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242 ZIMMERMANN et al.

F I G U R E 7
MP2RAGE-like contrast
generated by quantitative rapid
gradient-echo (QRAGE) for a
representative volunteer,
showcasing the images
obtained for each of the
measured repetitions.
Additionally, the uniform
images (UNI) image provided
by the MP2RAGE reference
measurement is included for
comparison.

To achieve an acceptable measurement time despite
the high number of inversion time points, QRAGE relies
on a high acceleration factor, which places pressure on
the reconstruction algorithm. In this study, we presented
the MIRAGE2 algorithm, which solves a convex problem
and guarantees convergence to a globally optimal solu-
tion. MIRAGE2 accounts for multi-exponential behavior
and exhibits robustness against partial volume artifacts,
noise, and static magnetic field inhomogeneity. As a future
application, conducting 2D multi-exponential relaxometry
would provide insights into whether a better identifica-
tion of myelin water, which exhibits significantly shorter
T1 and T∗2 values compared with extracellular white mat-
ter, is achievable.58,59 A potential challenge could be that
our model may be oversimplified, as it does not account
for additional effects such as chemical exchange between
water pools.

One of the fundamental challenges of the QRAGE
method lies in the substantial computing power require-
ments and its lengthy reconstruction time, making it
unsuitable for applications in which low latencies are cru-
cial. However, the fundamental reconstruction problem
is inherently parallel, and further parallelization of our
code would not only allow one to speed up the reconstruc-
tion but also would enable the simultaneous reconstruc-
tion of all slices. Enabling such capability would allow
the use of a koosh ball–like sampling scheme similar to
the one used in the MPnRAGE sequence.13 This sam-
pling scheme permits higher acceleration factors along
the z-dimension, potentially reducing acquisition time fur-
ther. Although radial sampling already provides a degree
of motion robustness, koosh ball–like sampling addition-
ally offers the potential for self-navigated motion cor-
rection, thereby further minimizing sensitivity to patient

motion and potential image artifacts.60 Additionally, the
MIRAGE2 algorithm could potentially benefit from incor-
porating a deep learning–based spatial denoiser, replacing
the stationary wavelet transform, thus forming a hybrid
architecture. Previous studies using hybrid architectures,
such as the model-based deep learning reconstruction
technique, have demonstrated improved results compared
with wavelet-based compressed-sensing MRI.61
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